If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-24t+11=0
a = 4.9; b = -24; c = +11;
Δ = b2-4ac
Δ = -242-4·4.9·11
Δ = 360.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-\sqrt{360.4}}{2*4.9}=\frac{24-\sqrt{360.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+\sqrt{360.4}}{2*4.9}=\frac{24+\sqrt{360.4}}{9.8} $
| −18= −12a | | 16/21=x/18 | | -2x-6=3x+19 | | 16x=-2x+5 | | 10x−3=8+10x | | 2(x+2-6=10-3(x-1) | | (2x-3)/(3)+(4x)/(3)=7 | | n-3/4-11/6=21/3 | | 2x=16.9 | | x➗11.2=17 | | 12x–10=26 | | 4(3x+1=28 | | x+.75x=6 | | F(x)=-2x^2+8x-1 | | 2(x+5)=(x+5)2 | | 2x+5=(x+5)2 | | (2w-3)w=14^2 | | 7x2-49=0 | | 5(u+4)-8u=38 | | 41x+372=560 | | 20-3/4x=10 | | 4x=16. | | 1/2x+14-9/x+7=6 | | 6d−d=15 | | 6(2+x)+5x=86 | | 5x-27x+6=0 | | (16)^(2x+1)=128 | | 4w=19w+5 | | 3^2x+1+26(3^x)-9=0 | | 6+k=12+3=15 | | 2^2x+2+8=33(2^x) | | X+1+x=21 |